Формула расчета угла наклона: Калькулятор угла наклона крыши — расчет уклона кровли онлайн и расчет односкатной крыши

Содержание

Калькулятор угла наклона крыши — расчет уклона кровли онлайн и расчет односкатной крыши

Калькулятор угла наклона крыши используется для расчета как угла уклона кровли, так и недостающих данных о кровле — проекции, высоты, длины и угла наклона ската кровли. Визуально где и какие величины можно увидеть на чертеже калькулятора, находящимся под формой расчета.

Для расчета угла наклона крыши или данных достаточно указать только две известные величины, а остальные величины (если они есть) можно использовать для проверки.

Единица измерений:

Метрическая система

Длина проекции (W):

Высота (H):

Длина ската кровли (L):

Угол наклона (α):

Градус

Формулы угла наклона крыши и длины ската

На картинке: a — угол ската, S — длина ската кровли, H — высота кровли в верхней части, L — длина проекции ската кровли

Соответственно все величины можно найти:

  • a = arctg(H/L) или a = arcsin(H/S)
  • H = L * tg a
  • S = H / sin a

Выше приведенные формулы позволяют рассчитать любое требуемое значение (если Вам почему-то не подошел наш калькулятор)

Расчет углов уклона кровель по типам

Расчет угла наклона односкатной крыши

Односкатная кровля является одной из самых популярных и, одновременно, одной из самых легких для расчета. Фактически — наш калькулятор рассчитывет именно ее, так как более сложные кровли (например, угол наклона двускатной крыши) требуют разбивки элементов кровли на отдельные скаты и просчета каждого из них.

При расчете наклона односкатной кровли и расчете длины и угла ската крыши обязательно учитывайте свесы! Посчитать их можно задавая данные не самого ската, а высоту и проекцию кровли именно вместе со свесами.

Материалы и углы для односкатных кровель
  • крыша из рубероида – 5-10 градусов
  • из профнастила – от 8 до 20 градусов
  • из металлочерепицы – 20-30 градусов
  • из шифера – 20-35 градусов
  • для фальцевой кровли необходим наклон 18-30 градусов

Расчет угла наклона двускатной крыши

Посчитать двускатную кровлю уже сложнее, чем посчитать угол наклона односкатной кровли. В случае для двух скатов необходимо рассчитывать на нашем калькуляторе уже каждый из скатов индивидуально, а для расчета материала лучше применить калькулятор кровли, т. к. расположение материала и его размеры могут быть не точными.

Расчет угла наклона вальмовой кровли

В свою очередь расчет вальмовой кровли еще сложнее чем расчет угла двускатной кровли. Вам необходимо не просто разбить и считать угол каждого ската отдельно, но и учитывать что углы для вальмовой кровли различаются.

Для вальмовой кровли так же особенно нужно учесть гуляющие размеры обрешетки, поэтому при расчете Вашей реальной кровли углы вальмовой кровли пусть немного, но будут различаться!

Виды кровли в зависимости от угла уклона крыши

Существует 4 основных типа крыш в зависимости от угла наклона:

  • 3-10° — плоские
  • 10-30° — пологие
  • 30-45° — скатные
  • 45-60° — высокие

Как рассчитать угол наклона крыши

Содержание статьи:

1. Что влияет на угол ската крыши?
2. Кровля из металлочерепицы
3. Кровля из профнастила
4. Кровля из рулонных «мягких» материалов
5. Как рассчитать угол наклона крыши

Процесс возведения крыши может остановиться, если заранее не подумать о таких вещах как угол наклона кровли и используемый кровельный материал. Так как эти два показателя имеют прямое влияние друг на друга, то их обязательно стоит учитывать наравне. Напомним, что кровли могут иметь один, два или четыре ската. В зависимости от типа, необходимо правильно подобрать углы скатов и материалы. В данной статье речь будет идти как раз о том, как рассчитать угол наклона крыши.

Что влияет на угол ската крыши?

Минимальный угол наклона односкатной крыши составляет 9 градусов, при этом такая кровля не должна быть больше 20 градусов (никто не запрещает этого делать, но придется организовать дополнительную стропильную конструкцию). Читайте также: «Какой угол наклона односкатной крыши лучше выбрать – что влияет на выбор правильного уклона кровли».

Точный угол зависит от ряда факторов:

  • выбранного материала кровли;
  • климатических особенностей региона;
  • целевого назначения здания.

В случае двухскатной крыши и более сложной конструкции, на выбор угла влияет не только особенности климата, но также и цели использования чердака. Так, например, если он будет нежилым, то есть используется для хранения различных вещей, то не нужно организовывать большую высоту подкровельного помещения. Ну а если под крышей будет полноценная мансарда, то здесь не обойтись без высокой крыши с большими углами наклонов.

Но на что в итоге следует обратить внимание? На дизайнерское решение, то есть на проект здания, на выбранный материал кровли, на количество осадков и силу ветров.

Очевидно, что для регионов с сильными ветрами необходимо возводить крышу с малыми углами — это позволяет снизить нагрузки на стропильную систему, а также избежать неприятного эффекта «срывания» кровли. Такая же конструкция крыши пригодится и для домов, возведенных в солнечных регионах с высокой температурой воздуха и малым количеством осадков. Для регионов с выраженными атмосферными явлениями (дожди, град, снегопады) угол наклона кровли должен быть большим — вплоть до 60 градусов. Это позволяет разгрузить крышу и стропила от нагрузки снега и воды. Кроме того, благодаря быстрому удалению осадков с поверхности, снижается вероятность протекания кровельного материала в местах стыков.

Для того чтобы рассчитать угол наклона крыши необходимо принимать во внимание все вышесказанное. Как правило, оптимальными считаются углы наклона скатов в пределах 20-45 градусов. Перед тем, как рассчитать крышу дома, стоит учитывать ширину стены, то есть расстояние от начала скатов, так как при увеличении этого значения можно значительно снизить угол, при этом не ограничив чердак в высоте.

Для возведения крыши с уклонами больше 9 градусов можно применять практически все доступные на рынке кровельные материалы — черепицу, профнастил, шифер и т. д. Но здесь важно учитывать индивидуальные требования каждого отдельного материала, а также понимать, как рассчитать уклон кровли правильно.

Кровля из металлочерепицы

Хорошо известно, что металлочерепица гораздо тяжелее других материалов. Именно поэтому стоит очень внимательно проводить расчеты несущей способности системы стропил. Особенно важно учитывать вес материала и угол наклона крыши для металлочерепицы в регионах с сильными ветрами. Динамические нагрузки оказывают крайне негативное влияние на материал и несущую конструкцию, особенно сильно это проявляется при больших углах наклона крыши.

Для кровель, возводимых с использованием металлочерепицы, среднее значение угла наклона составляет 22 градуса. Согласно наблюдениям профессионалов именно такой уклон позволяет предотвратить скапливание и проникновение влаги на стыках, хорошо отводить снег и воду, а также противостоять нагрузкам ветра. Минимальный угол наклона крыши при этом должен составлять не менее 14 градусов. Для мягкой черепицы этот показатель равен 11 градусам, при этом такая кровля требует организации сплошной обрешетки.

Кровля из профнастила

Данный материал пользуется огромной популярностью. Он отличается малым весом, простотой установки и ремонта. Кроме того, закрепить листы профнастила на обрешетке очень просто. Минимальный угол такой кровли составляет 12 градусов.

Именно эта рекомендация указана в инструкции большинства производителей материала.

Кровля из рулонных «мягких» материалов

К таким материалам относят ондулин, рубероид, мембранные покрытия. В зависимости от количества слоев, используемых для покрытия крыши, угол наклона может колебаться от 2 до 15 градусов. Так, для двухслойной кровли уклон составляет 15 градусов, в то время как трехслойная конструкция позволяет покрывать плоскую крышу с углом наклона 2-5 градусов.

Мембранные покрытия могут использоваться для возведения крыш абсолютно любой конфигурации независимо от ее сложности. Так, угол наклона четырехскатной крыши (отдельных ее элементов) может составлять от 2 градусов.

Как можно понять из всего сказанного выше, выбранный угол наклона зависит от решения хозяина. Но при этом во внимание принимаются нагрузки на несущую конструкцию (статические и динамические). Также важно учесть тип обрешетки и ее шаг, так как эти параметры зависят именно от угла наклона. Для малых углов шаг обрешетки составляет в среднем 35-45 см.

Угол наклона крыши напрямую влияет и на расход кровельного материала. Так, чем больший угол, тем больше потребуется материала для покрытия плоскостей.

Во время подбора кровельного материала можно воспользоваться следующими советами:

  • При малом уклоне кровли (до 10 градусов), крышу можно покрыть с использованием гравия и крошки камня. При этом берут слой гравия равный 15 мм, а крошки камня — 5 мм.
  • При более выраженных углах наклона крыши обязательно применяют гидроизоляцию с помощью битума. Для рулонных материалов, кроме всего прочего, необходимо провести покрытие защитным материалом.
  • Асбестоцементные листы и профнастил требуют обязательной герметизации швов. Все стыки при этом делаются двойными.

Что нужно знать при выборе крыши — видео урок:

Как рассчитать угол наклона крыши

Данный угол зависит от высоты подъема конька над внешней плоскостью потолка. Этот параметр зависит от цели использования чердачного помещения. Так, если чердак необходим только в хозяйственных целях, то высота конька может быть небольшой. Если же помещение будет использоваться как мансарда, то необходимо поднять его на значительную высоту (подробнее: «Как рассчитать высоту крыши дома»). Расчеты при этом можно провести по простой схеме.


Формула расчета угла наклона крыши:

Sin(а)=a/b,

  • где a — половина ширины фронтона;
  • b — выбранная высота конька.

Предположим, что дом имеет ширину 6 м, а чердак будет использовать для хранения различных хозяйственных вещей, поэтому он будет возвышаться на 1,8 м. Таким образом, синус угла скатов будет равен Sin(а) = 3/1,8 = 1,67. Используя специальные тригонометрические таблицы переведем полученное значение в градусы. В итоге скаты будут иметь угол наклона около 59 градусов. Для большей простоты проведения кровельных работ его можно принять равным 60 градусам. Читайте также: «Как рассчитать профнастил крышу».

Угол наклона и наклон линии

Пусть прямая l пересекает ось x в точке A. Угол между положительной осью x и линией l, измеренный в направлении против часовой стрелки, называется углом наклона прямая л.

На приведенном выше рисунке, если θ – это угол прямой линии l, то мы имеем следующие важные моменты.

(i) 0° ≤ θ ≤ 180°

(ii)  Для горизонтальных линий θ = 0° или 180° и для вертикальных линий θ = 90°

(iii)  Если прямая линия первоначально лежит вдоль оси x и начинает вращаться вокруг неподвижной точки A на оси x против часовой стрелки и, наконец, совпадает с осью x, то угол наклона прямой линии в начальном положении равно 0°, а линии в конечном положении равно 0°.

(iv)  Линии, перпендикулярные оси x, называются вертикальными линиями.

(v)  Линии, перпендикулярные оси Y, называются горизонтальными линиями.

(vi)  Другие линии, которые не перпендикулярны ни оси x, ни оси y, называются наклонными линиями.

Угол наклона и наклон линии – Приложение

Основное применение угла наклона прямой линии – определение уклона.

Если θ – угол наклона прямой линии l, то tanθ называется наклоном градиента линии и обозначается буквой «m».

Следовательно, наклон прямой равен

м  = tan θ 

для 0° ≤ θ ≤ 180°

Найдем наклон прямой по приведенной выше формуле

(i)  Для горизонтальных линий угол наклона равен 0° или 180°.

То есть

θ = 0° или 180°

Следовательно, наклон прямой линии равен

м  = tan0° или tan 180°  = 0

(ii) Для вертикальных линий угол наклона равен 90°.

То есть

θ = 90°

Следовательно, наклон прямой равен

м  =  tan90°  =  Не определено

(iii) Для наклонных линий, если θ имеет острую форму, наклон положительный. Если же θ тупой, то наклон отрицательный.

Наклон линии — положительный или отрицательный, нулевой или неопределенный

Когда мы смотрим на прямую линию визуально, мы можем легко узнать знак наклона.

Чтобы узнать знак наклона прямой, всегда нужно смотреть на прямую слева направо.

Это иллюстрируют приведенные ниже рисунки.

Решенные задачи

Задача 1 :

Найдите угол наклона прямой, наклон которой равен 1/√3.

Решение :

Пусть θ — угол наклона линии.

Тогда, наклон линии составляет

M = TANθ

Дано: наклон = 1/√3

Затем,

1/√3 = tanθ

θ = 30 °

Таким наклон 30°.

Задача 2 :

Если угол наклона прямой равен 45°, найдите ее наклон.

Решение :

Пусть θ — угол наклона линии.

Тогда, наклон линии,

M = TANθ

Дано: θ = 45 °

Затем,

M = TAN 45 °

M = 1

Итак, склон — 1.

.

Задача 3 :

Если угол наклона прямой равен 30°, найдите ее наклон.

Решение :

Пусть θ — угол наклона линии.

Затем, наклон линии,

м = tanθ

Дано: θ = 30°

Тогда

м = tan30°

м = 1/√3

Итак, уклон равен √3

.

Задача 4 :

Найдите угол наклона прямой, наклон которой равен √3.

Решение :

Пусть θ — угол наклона линии.

Затем, наклон линии,  

м  = tanθ

Дано: Уклон  =  √3

Тогда, 

√3  =  tanθ  

θ  = 60°

Итак, угол наклона равен 60°.

Задача 5 :

Найдите угол наклона прямой, уравнение которой y = x + 32.

Решение :

Пусть θ — угол наклона линии.

Данное уравнение находится в форме пересечения наклона.

То есть

y = mx + b

Сравнивая

y = x + 32

и

y = mx + b,

получаем наклон 1. m = 9.0004

Мы знаем, что наклон линии равен

м  =  tanθ

Тогда

1  =  tanθ

θ  = 45°

Итак, угол наклона равен 45°.

Пожалуйста, отправьте свой отзыв на [email protected]

Мы всегда ценим ваши отзывы.

©Все права защищены. onlinemath5all.com

4.3 Наклон линии | Аналитическая геометрия

4.3 Наклон линии (EMBGD)

На диаграмме показано, что прямая образует угол \(\theta\) с положительной осью \(x\). Это называется угол наклона прямой.

Мы замечаем, что если градиент изменяется, то значение \(\theta\) также изменяется, поэтому угол наклон линии связан с ее градиентом. Мы знаем, что градиент – это отношение изменения \(y\)-направление на изменение \(x\)-направления:

\[m=\frac{\Delta y}{\Delta x}\]

Из тригонометрии мы знаем, что функция тангенса определяется как отношение:

\[\tan \theta = \frac{\text{противоположная сторона}}{\text{прилегающая сторона}}\]

А из схемы мы видим, что

\начать{выровнять*} \tan \theta &= \dfrac{\Delta y}{\Delta x} \\ \поэтому m &= \tan \theta \qquad \text{ for } \text{0}\text{°} \leq \theta < \текст{180}\текст{°} \конец{выравнивание*}

Следовательно, градиент прямой линии равен тангенсу угла, образованного между прямой и положительное направление оси \(x\).

Вертикальные линии

  • \(\тета = \текст{90}\текст{°}\)
  • Градиент не определен, так как значения \(x\) не изменились (\(\Delta x = 0\)).
  • Следовательно, \(\tan \theta\) также не определено (график \(\tan \theta\) имеет асимптоту в \(\theta = \text{90}\text{°}\)).

Горизонтальные линии

  • \(\тета = \текст{0}\текст{°}\)
  • Градиент равен \(\text{0}\), поскольку значения \(y\) не изменяются (\(\Delta y = 0\)).
  • Следовательно, \(\tan \theta\) также равно \(\text{0}\) (график \(\tan \theta\) проходит через происхождение \((\text{0}\text{°};0))\).

Линии с отрицательным уклоном

Если прямая имеет отрицательный наклон (\(m < 0\), \(\tan \theta < 0\)), то угол, образованный между прямой и положительным направлением оси \(х\) тупая.

Из диаграммы CAST в тригонометрии мы знаем, что функция тангенса отрицательна во втором и четвертом квадрант. Если мы вычисляем угол наклона для линии с отрицательным градиентом, мы должны добавить \(\text{180}\text{°}\), чтобы изменить отрицательный угол в четвертом квадранте на тупой угол в второй квадрант:

Если нам дана прямая с градиентом \(m = -\text{0,7}\), то мы можем определить угол наклон с помощью калькулятора: 9{-1}(-\текст{0,7}) \\ &= -\текст{35,0}\текст{°} \конец{выравнивание*}

Этот отрицательный угол лежит в четвертом квадранте. Мы должны добавить \(\text{180}\)\(\text{°}\) чтобы получить тупой угол во втором квадранте:

\начать{выровнять*} \тета &= -\текст{35,0}\текст{°} + \текст{180}\текст{°} \\ &= \текст{145}\текст{°} \конец{выравнивание*}

И мы всегда можем использовать наш калькулятор, чтобы проверить, что тупой угол \(\theta = \text{145}\text{°}\) дает градиент \(m = -\text{0,7}\).

Угол наклона

Учебник Упражнение 4.5

\(\text{60}\text{°}\)

\begin{align*} м &= \загар \тета\\ &= \tan \text{60}\text{°} \\ \поэтому m &= \text{1,7} \end{align*}

\(\text{135}\text{°}\)

\begin{align*} м &= \загар \тета\\ &= \tan \text{135}\text{°} \\ \поэтому m &= -\text{1} \end{выравнивание*}

\(\text{0}\text{°}\)

\begin{align*} м &= \загар \тета\\ &= \tan \text{0}\text{°} \\ \поэтому m &= \text{0} \end{align*}

\(\text{54}\text{°}\)

\begin{align*} м &= \загар \тета\\ &= \загар \текст{54}\текст{°} \\ \поэтому m &= \text{1,4} \end{выравнивание*}

\(\text{90}\text{°}\)

\begin{align*} м &= \загар \тета\\ &= \загар \текст{90}\текст{°} \\ \поэтому m & \text{ не определено} \end{align*}

\(\text{45}\text{°}\)

\begin{align*} м &= \загар \тета\\ &= \tan \text{45}\text{°} \\ \поэтому m &= \text{1} \end{выравнивание*}

\(\text{140}\text{°}\)

\begin{align*} м &= \загар \тета\\ &= \tan \text{140}\text{°} \\ \поэтому m &= -\text{0,8} \end{align*}

\(\text{180}\text{°}\)

\begin{align*} м &= \загар \тета\\ &= \tan \text{180}\text{°} \\ \поэтому m &= \text{0} \end{выравнивание*} 9{-1} \влево( \text{0,75} \вправо) \\ \поэтому \тета &= \text{36,8}\text{°} \end{align*}

\(2y — x = 6\)

\begin{align*} 2у — х&=6\ 2у &= х + 6 \\ y &= \frac{1}{2}x + 3 \\ \загар \тета &= м \\ &= \фракция{1}{2} \\ \theta &= \tan^{-1} \left( \text{0,5} \right) \\ \поэтому \тета &= \текст{26,6}\текст{°} \end{выравнивание*} 9{-1} \влево( \текст{1} \вправо) \\ \поэтому \тета &= \text{45}\text{°} \end{align*}

\(y=4\)

Горизонтальная линия

\(x = 3y + \frac{1}{2}\)

\begin{align*} х &= 3y + \frac{1}{2} \\ x — \frac{1}{2} &= 3y \\ \frac{1}{3}x — \frac{1}{6} &= y \\ \поэтому m &= \frac{1}{3} \\ \theta &= \tan^{-1} \left( \frac{1}{3} \right) \\ \поэтому \тета &= \text{18,4}\text{°} \end{выравнивание*} 9{-1} \влево( \текст{0,577} \вправо) \\ \поэтому \тета &= \text{30}\text{°} \конец{выравнивание*}

Рабочий пример 8: Наклон прямой линии

Определить угол наклона (с точностью до \(\text{1}\) десятичного знака) прямой линии проходящей через точки \((2;1)\) и \((-3;-9)\). {-1}2\\ &= \текст{63,4}\текст{°} \end{выравнивание*}

Важно: убедитесь, что ваш калькулятор находится в режиме DEG (градусы).

Напишите окончательный ответ

Угол наклона прямой равен \(\text{63,4}\)\(\text{°}\).

temp text

Рабочий пример 9: Наклон прямой линии

Определите уравнение прямой, проходящей через точку \((3;1)\) и с углом наклон \(\text{135}\text{°}\).

Используйте угол наклона для определения градиента линии

\begin{align*} м &= \загар \тета\\ &= \tan \text{135}\text{°} \\ \поэтому m &= -1 \конец{выравнивание*}

Запишите уравнение прямой линии в форме точки градиента. x — x_1)\]

Подставить заданную точку \((3;1)\)

\begin{выравнивание*} у — 1 & = -(х — 3) \\ у&=-х+3+1\ &= -х + 4 \конец{выравнивание*}

Напишите окончательный ответ

Уравнение прямой линии \(y = -x + 4\).

temp text

Рабочий пример 10: Наклон прямой линии

Определить острый угол (с точностью до \(\text{1}\) десятичного знака) между прямой, проходящей через точки \(M(-1;1\frac{3}{4})\) и \(N(4;3)\) и прямая \(y = — \frac{3}{2}x + 4\).

Нарисуйте эскиз

Проведите прямую через точки \(M(-1;1\frac{3}{4})\) и \(N(4;3)\) и прямую \(y = — \ дробь{3}{2}x + 4\) в подходящей системе координат. Обозначьте \(\alpha\) и \(\beta\) углы наклона две строки. Обозначьте \(\theta\) острый угол между двумя прямыми.

Обратите внимание, что \(\alpha\) и \(\theta\) — острые углы, а \(\beta\) — тупой угол.

\[\begin{массив}{rll} \hat{B}_1 &= \text{180}\text{°} — \beta & (\angle \text{на строке}) \\ \text{and} \theta &= \alpha + \hat{B}_1 \quad & (\text{ext.} \angle \text{ of } \triangle = \text{ сумма внутр. опп}) \\ \поэтому \тета &= \альфа + (\текст{180}\текст{°} — \бета) \\ &= \text{180}\text{°} + \alpha — \beta \конец{массив}\] 9{-1} \left(-\frac{3}{2}\right) &= -\text{56,3}\text{°} \конец{выравнивание*}

Этот отрицательный угол лежит в четвертом квадранте. Мы знаем, что угол наклона \(\beta\) равен тупой угол лежит во второй четверти, поэтому

\начать{выравнивать*} \beta &= -\text{56,3}\text{°} + \text{180}\text{°}\\ &= \текст{123,7}\текст{°} \конец{выравнивание*}

Определить градиент и угол наклона линии через \(M\) и \(N\)

Определение градиента \начать{выравнивать*} m & = \frac{y_2 — y_1}{x_2 — x_1} \\ & = \dfrac{3 — \frac{7}{4}}{4-(-1)} \\ & = \dfrac{\frac{5}{4}}{5} \\ &= \фракция{1}{4} \end{align*}

Определить угол наклона \начать{выравнивать*} \загар \альфа & = м\\ & = \фракция{1}{4} \\ \поэтому \alpha & = \tan^{-1} \left( \frac{1}{4} \right) \\ &= \текст{14,0}\текст{°} \end{выравнивание*}

Напишите окончательный ответ

\begin{align*} \тета & = \текст{180}\текст{°} + \альфа — \бета\\ & = \text{180}\text{°} + \text{14,0}\text{°} — \text{123,7}\text{°} \\ & = \текст{70,3}\текст{°} \end{align*}

Острый угол между двумя прямыми равен \(\text{70,3}\)\(\text{°}\). {-1} \left( -\text{2} \right) \\ &= -\текст{63,4}\текст{°} \\ \поэтому \theta &= \text{180}\text{°} — \text{63,4}\text{°} \\ \поэтому \тета &= \text{80}\text{°} \end{выравнивание*} 9{-1} \влево(-\frac{9}{2} \вправо) \\ &= -\текст{77,5}\текст{°} \\ \поэтому \тета &= \text{180}\text{°} — \text{77,5}\text{°} \\ \поэтому \тета &= \текст{102,5}\текст{°} \end{align*}

линия, проходящая через \((-1;-6)\) и \((-\frac{1}{2};-\frac{11}{2})\)

\begin{выравнивание*} m &= \frac{y_2 -y_1}{x_2 — x_1} \\ &= \frac{-\frac{11}{2}+ 6}{-\frac{1}{2}+1} \\ &= \ гидроразрыва {\ гидроразрыва {1} {2}} {\ гидроразрыва {1} {2}} \\ \поэтому m &= 1 \\ \theta &= \tan^{-1} \left( 1 \right) \\ \поэтому \тета &= \text{45}\text{°} \end{выравнивание*} 9{-1} \влево(-\frac{1}{3} \вправо) \\ \поэтому \тета &= -\текст{18,4}\текст{°} \\ \поэтому \тета &= \text{180}\text{°} — \text{18,4}\text{°} \\ \поэтому \тета &= \текст{161,6}\текст{°} \end{align*}

Градиент undefined

Определить острый угол между линией, проходящей через точки \(A(-2;\frac{1}{5})\) и \(B(0;1)\) и прямой, проходящей через точки \(C(1;0)\) и \(D(-2;6)\). {-1} \left(-2 \right) \\ \поэтому \alpha &= -\text{63,4}\text{°} \\ \поэтому \alpha &= \text{180}\text{°} — \text{63,4}\text{°} \\ \поэтому \alpha &= \text{116,6}\text{°} \\ \text{And } \theta &= \beta + (\text{180}\text{°} — \alpha) \quad (\text{ext. } \angle \треугольник)\\ \поэтому \theta &= \text{21,8}\text{°} + (\text{180}\text{°} — \text{116,6}\text{°} ) \\ &= \текст{85,2}\текст{°} \конец{выравнивание*}

Определить угол между прямой \(y + x = 3\) и прямой \(x = y + \frac{1}{2}\).

Пусть угол наклона линии \(y + x = 3\) равен \(\alpha\), а угол наклона наклон линии \(x = y + \frac{1}{2}\) равен \(\beta\). Пусть угол между двумя строки будут \(\тета\):

\начать{выравнивать*} у &= — х + 3 \\ \поэтому m &= — 1 \\ \alpha &= \tan^{-1} \left(-1\right) \\ \поэтому \alpha &= -\text{45}\text{°} \\ \поэтому \alpha &= \text{180}\text{°} — \text{45}\text{°} \\ \поэтому \alpha &= \text{135}\text{°} \\ х &= у + \ гидроразрыва {1} {2} \\ х — \фракция{1}{2} &= у \\ \поэтому m &= 1 \\ \beta &= \tan^{-1} \left(1 \right) \\ \поэтому \бета &= \text{45}\text{°} \\ \text{And } \theta &= \beta + (\text{180}\text{°} — \alpha) \quad (\text{ext.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *