Мобильные вышки – Базовая станция — Википедия
Базовая станция — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 сентября 2013; проверки требуют 9 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 сентября 2013; проверки требуют 9 правок. Антенны базовой станции на башне Базовая станция сотовой связиБазовая станция в радиосвязи вообще — системный комплекс приёмопередающей аппаратуры, осуществляющей централизованное обслуживание группы оконечных абонентских устройств.
Например, при организации связи малогабаритными мобильными рациями на местности, устанавливается стационарная антенна и радиостанция более высокой, нежели остальные, выходной мощности. Она осуществляет при необходимости ретрансляцию сигнала, а её оператор контролирует обстановку в эфире.
В беспроводных сетях передачи данных[править | править код]
Профессиональная радиосвязь[править | править код]
В профессиональных дуплексных системах радиосвязи базовая станция используется как центральный узел, выполняющий диспетчерские функции в сети мобильных радиостанций с централизованной топологией, а также как передатчик сообщений в пейджинговой связи. При этом базовая станция выступает в роли одного из оконечных узлов в канале связи, в роли другого оконечного узла выступает носимая или возимая радиостанция.[1] Примерами базовых станций в профессиональной дуплексной радиосвязи являются диспетчерские центры службы такси или службы эвакуации автомобилей.
Базовые станции обычно бывают одноканальными. В системах с радиообменом низкой интенсивности возможно использование многоканальных базовых станций. [2] В системах с интенсивным радиообменом при необходимости использования дополнительных каналов обычно устанавливают по одной одноканальной радиостанции на каждый канал. При этом на диспетчерском пульте каждая базовая станция отображается как отдельный канал. В больших диспетчерских центрах с несколькими диспетчерами это обеспечивает независимую одновременную работу нескольких диспетчеров на разных каналах. При этом базовые станции могут быть территориально удалены как друг от друга, так и от диспетчерского центра. В качестве примера приводят единый диспетчерский центр такси на несколько городов. Диспетчер выбирает требуемый канал и передаёт информацию автомобилям в требуемом городе.
Базовые станции могут быть с местным или дистанционным управлением. Местное управление обеспечивается локально при помощи органов управления оборудования, установленного на базовой станции. При дистанционном управлении используются органы управления на диспетчерском пульте. Команды передаются при помощи сигналов переменного тока тональной частоты либо сигналами постоянного тока в формате 4-20 мА. Команды обрабатываются схемами управления на базовой станции. Связь диспетчерского центра с удаленными базовыми станциями ведется по выделенному телефонному каналу либо по каналу радиосвязи, отличному от канала связи с подвижными объектами. Некоторые системы для связи диспетчерского центра с базовыми станциями используют четырёхпроводные телефонные линии или радиоканалы полной дуплексной связи, иные системы используют двухпроводные телефонные линии или полудуплексные радиоканалы.
Любительская радиосвязь[править | править код]
В любительской радиосвязи также используются базовые станции, обеспечивающие связь между мобильными объектами. Её используют путешественники, дальнобойщики, а также иные лица, в основном для развлечения и для связи между членами одной группы. Любительскую радиосвязь также используют для связи со спасательными службами при чрезвычайных происшествиях, а также для экстренного оповещения гражданского населения при стихийных бедствиях.
В качестве примера можно привести австралийскую сеть базовых станций гражданского диапазона УКВ (UHF CB), которая состоит из многочисленных базовых станций и ретрансляторов, работающих на различных каналах и позволяющих обеспечивать вызов спасательных и дорожных служб, а также связь между радиостанциями, находящимися в разных частях страны.
Антенная мачта базовой станции, замаскированная под деревоБеспроводная телефония отличается от дуплексной радиосвязи тем, что:
- Беспроводная телефонная связь является коммутируемой: при помощи набора номера в начале разговора устанавливается канал связи с вызываемым абонентом, после того как один из абонентов положит трубку — канал разрывается.
- Беспроводные телефоны обычно имеют связь с телефонной сетью общего пользования.
Базовая станция в беспроводной телефонии связывается с носимым или возимым беспроводным телефонным аппаратом. При этом сигналы от одного или нескольких мобильных телефонов принимаются базовой станцией, которая передает эти вызовы в наземные телефонные линии. Применение других видов аппаратуры при этом зависит от архитектуры сети. Мобильные сети операторов связи, например сети GSM, используют для этих целей коммутаторы, Радиорелейная связь и Автоматическая телефонная станция. В отличие от этого базовые станции бытовых беспроводных радиотелефонов подсоединены напрямую проводным к телефонным линиям.
В сотовой связи[править | править код]
Базовая станция применительно к сотовой связи — комплекс радиопередающей аппаратуры (ретрансляторы, приёмопередатчики), осуществляющий связь с конечным абонентским устройством — сотовым телефоном. Одна базовая станция стандарта GSM обычно способна поддерживать до 12 передатчиков, а каждый передатчик способен одновременно поддерживать связь с 8 общающимися абонентами. Комплекс расположенных рядом базовых станций образует соту. Базовые станции соединены с коммутатором сотовой сети через контроллер базовых станций [3]. Контроллер и коммутатор устанавливаются в одном помещении и соединяются прямой оптической линией. Подключение каждой базовой станции к контроллеру осуществляется посредством транспортной сети, которая строится на базе радиорелейных, волоконно-оптических и медных линий. В некоторых странах базовые станции маскируют под растительность, что позволяет немного разукрасить железные конструкции вышек[4].
Базовые станции также применяются в сотовом телевидении, транкинговой связи, сетях Wi-Fi, WiMAX и других технологиях.
- ↑ «Evaluating Regional Alternatives: Systems Design Considerations, » Planning Emergency Medical Communications: Volume 2, Local/Regional Level Planning Guide, (Washington, D.C.: National Highway Traffic Safety Administration, US Department of Transportation, 1995) pp. 39-43.
- ↑ Block diagram is from: «Figure 2: Two Channel VHF Base Station, »
Planning Emergency Medical Communications: Volume 2, Local/Regional Level Planning Guide, (Washington, D.C.: National Highway Traffic Safety Administration, US Department of Transportation, 1995) pp. 42. - ↑ Базовые станции операторов сотовой связи
- ↑ Как операторы скрывают сотовые вышки
ru.wikipedia.org
Базовые станции сотовой связи и их антенная часть
И вновь немного общеобразовательного материала. На этот раз речь пойдет о базовых станциях. Рассмотрим различные технические моменты по их размещению, конструкции и дальности действия, а также заглянем внутрь самого антенного блока.
Базовые станции. Общие сведения
Так выглядят антенны сотовой связи, установленные на крышах зданий. Эти антенны являются элементом базовой станции (БС), а конкретно – устройством для приема и передачи радиосигнала от одного абонента к другому, и далее через усилитель к контроллеру базовой станции и другим устройствам. Являясь наиболее заметной частью БС, они устанавливаются на антенных мачтах, крышах жилых и производственных зданий и даже дымовых трубах. Сегодня можно встретить и более экзотические варианты их установки, в России их уже устанавливают на столбах освещения, а в Египте их даже «маскируют» под пальмы.
Подключение базовой станции к сети оператора связи может производиться по радиорелейной связи, поэтому рядом с «прямоугольными» антеннами блоками БС можно увидеть радиорелейную тарелку:
С переходом на более современные стандарты четвертого и пятого поколений, для удовлетворения их требований подключать станции нужно будет исключительно по волоконной оптике. В современных конструкциях БС оптоволокно становится неотъемлемой средой передачи информации даже между узлами и блоками самой БС. К примеру, на рисунке ниже показано устройство современной базовой станции, где оптоволоконный кабель используется для передачи данных от RRU (выносные управляемые модули) антенны до самой базовой станции (показано оранжевой линией).
Оборудование базовой станции располагается в нежилых помещениях здания, либо устанавливается в специализированные контейнеры (закрепленные на стенах или столбах), ведь современное оборудования выполняется довольно компактно и может запросто поместиться в системный блок серверного компьютера. Часто радиомодуль устанавливают рядом с антенным блоком, это позволяет уменьшить потери и рассеивание передаваемой в антенну мощности. Так выглядят три установленных радиомодуля оборудования базовой станции Flexi Multiradio, закрепленные прямо на мачте:
Зона обслуживания базовых станций
Для начала следует отметить, что бывают различные типы базовых станций: макро, микро, пико и фемтосоты. Начнем с малого. И, если кратко, то фемтосота не является базовой станцией. Это, скорее, Access Point (точка доступа). Данное оборудование изначально ориентируется на домашнего или офисного пользователя и владельцем такого оборудования является частное или юр. лицо, не относящееся к оператору. Главное отличие такого оборудования заключается в том, что оно имеет полностью автоматическую конфигурацию, начиная от оценки радиопараметров и заканчивая подключением к сети оператора. Фемтосота имеет габариты домашнего роутера:
Пикосота – это БС малой мощности, принадлежащая оператору и использующая в качестве транспортной сети IP/Ethernet. Обычно устанавливается в местах возможной локальной концентрации пользователей. Устройство по размерам сравнимо с небольшим ноутбуком:
Микросота – это приближенный вариант реализации базовой станции в компактном виде, очень распространено в сетях операторов. От «большой» базовой станции ее отличает урезанная емкость поддерживаемых абонентом и меньшая излучающая мощность. Масса, как правило, до 50 кг и радиус радиопокрытия — до 5 км. Такое решение используется там, где не нужны высокие емкости и мощности сети, или нет возможности установить большую станцию:
И наконец, макросота – стандартная базовая станция, на базе которой строятся мобильные сети. Она характеризуется мощностями порядка 50 W и радиусом покрытия до 100 км (в пределе). Масса стойки может достигать 300 кг.
Зона покрытия каждой БС зависит от высоты подвеса антенной секции, от рельефа местности и количества препятствий на пути до абонента. При установке базовой станции далеко не всегда на первый план выносится радиус покрытия. По мере роста абонентской базы может не хватить максимальной пропускной способности БС, в этом случае на экране телефона появляется сообщение «сеть занята». Тогда оператор со временем на этой территории может сознательно уменьшить радиус действия базовой станции и установить несколько дополнительных станций в местах наибольшей нагрузки.
Когда нужно увеличить емкость сети и снизить нагрузку на отдельные базовые станции, тогда и приходят на помощь микросоты. В условиях мегаполиса зона радиопокрытия одной микросоты может составлять всего 500 метров.
В условиях города, как ни странно, встречаются такие места, где оператору нужно локально подключить участок с большим количеством трафика (районы станций метро, крупные центральные улицы и др.). В этом случае применяются маломощные микросоты и пикосоты, антенные блоки которых можно располагать на низких зданиях и на столбах уличного освещения. Когда возникает вопрос организации качественного радиопокрытия внутри закрытых зданий (торговые и бизнес центры, гипермаркеты и др.) тогда на помощь приходят пикосотовые базовые станции.
За пределами городов на первый план выходит дальность работы отдельных базовых станций, так установка каждой базовой станции в удалении от города становится все более дорогостоящим предприятием в связи с необходимостью построения линий электропередач, дорог и вышек в сложных климатических и технологических условиях. Для увеличения зоны покрытия желательно устанавливать БС на более высоких мачтах, использовать направленные секторные излучатели, и более низкие частоты, менее подверженные затуханию.
Так, например, в диапазоне 1800 МГц дальность действия БС не превышает 6-7 километров, а в случае использования 900–мегагерцового диапазона зона покрытия может достигать 32 километров, при прочих равных условиях.
Антенны базовых станций. Заглянем внутрь
В сотовой связи чаще всего используют секторные панельные антенны, которые имеют диаграмму направленности шириной в 120, 90, 60 и 30 градусов. Соответственно для организации связи во всех направлениях (от 0 до 360) может потребоваться 3 (ширина ДН 120 градусов) либо 6 (ширина ДН 60 градусов) антенных блоков. Пример организации равномерного покрытия во всех направлениях показан на рисунке ниже:
А ниже вид типовых диаграмм направленности в логарифмическом масштабе.
Большинство антенн базовых станций широкополосные, позволяющие работать в одном, двух или трех диапазонах частот. Начиная с сетей UMTS, в отличие от GSM, антенны базовых станций умеют изменять площадь радиопокрытия в зависимости от нагрузки на сеть. Один из самых эффективных методов управления излучаемой мощностью – это управление углом наклона антенны, таким способом изменяется площадь облучения диаграммы направленности.
Антенны могут иметь фиксированный угол наклона, либо имеют возможность дистанционной регулировки с помощью специального программного обеспечения, располагаемого в блоке управления БС, и встроенных фазовращателей. Существуют также решения, позволяющие изменять зону обслуживания, от общей системы управления сети передачи данных. Таким образом, можно регулировать зону обслуживания всего сектора базовой станции.
В антеннах базовых станций применяется как механическое управление диаграммой, так и электрическое. Механическое управление проще реализуется, но часто приводит к искажению формы диаграммы направленности из-за влияния конструктивных частей. Большинство антенн БС имеет систему электрической регулировки угла наклона.
Современный антенный блок представляет собой группу излучающих элементов антенной решетки. Расстояние между элементами решетки выбирается таким образом, чтобы получить наименьший уровень боковых лепестков диаграммы направленности. Наиболее часто встречаются длины панельных антенн от 0,7 до 2,6 метров (для многодиапазонных антенных панелей). Коэффициент усиления варьируется от 12 до 20 dBi.
На рисунке ниже (слева) представлена конструкция одной из наиболее распространенных (но уже устаревающих) антенных панелей.
Здесь излучатели антенной панели представляют собой полуволновые симметричные электрические вибраторы над проводящим экраном, расположенные под углом 45 градусов. Такая конструкция позволяет формировать диаграмму с шириной главного лепестка 65 или 90 градусов. В такой конструкции выпускаются двух- и даже трехдиапазонные антенные блоки (правда, довольно крупногабаритные). Например, трехдиапазонная антенная панель такой конструкции (900, 1800, 2100 МГц) отличается от однодиапазонной, примерно в два раза большим размером и массой, что, конечно же, затрудняет ее обслуживание.
Альтернативная технология изготовления таких антенн предполагает выполнение полосковых антенных излучателей (металлические пластины квадратной формы), на рисунке выше справа.
А вот еще один вариант, когда в качестве излучателя используются полуволновые щелевые магнитные вибраторы. Линия питания, щели и экран выполняются на одной печатной плате с двухсторонним фольгированным стеклотекстолитом:
С учетом современных реалий развития беспроводных технологий, базовые станции должны поддерживать работу 2G, 3G и LTE сетей. И если блоки управления базовых станций сетей разных поколений удается вместить в один коммутационный шкаф без увеличения габаритного размера, то с антенной частью возникают значительные трудности.
Например, в многодиапазонных антенных панелях количество коаксиальных соединительных линий достигает 100 метров! Столь значительная длина кабеля и количество паяных соединений неизбежно приводит к потерям в линиях и снижению коэффициента усиления:
С целью снижения электрических потерь и уменьшения точек пайки часто делают микрополосковые линии, это позволяет выполнить диполи и систему запитки всей антенны по единой печатной технологии. Данная технологиях проста в производстве и обеспечивает высокую повторяемость характеристик антенны при ее серийном выпуске.
Многодиапазонные антенны
С развитием сетей связи третьего и четвертого поколений требуется модернизация антенной части как базовых станций, так и сотовых телефонов. Антенны должны работать в новых дополнительных диапазонах, превышающих 2.2 ГГц. Более того, работа в двух и даже трех диапазонах должна производиться одновременно. Вследствие этого антенная часть включает в себя довольно сложные электромеханические схемы, которые должны обеспечивать должное функционирование в сложных климатических условиях.
В качестве примера рассмотрим конструкцию излучателей двухдиапазонной антенны базовой станции сотовой связи Powerwave, работающей в диапазонах 824-960, МГц и 1710-2170, МГц. Ее внешний вид показан на рисунке ниже:
Этот двухдиапазонный облучатель состоит из двух металлических пластин. Та, что большего размера работает в нижнем диапазоне 900 МГц, над ней расположена пластина с щелевым излучателем меньшего размера. Обе антенны возбуждаются щелевыми излучателями и таким образом имеют единую линию запитки.
Если в качестве излучателей используются дипольные антенны, то необходимо ставить отдельный диполь для каждого диапазона волн. Отдельные диполи должны иметь свою линию запитки, что, конечно же, снижает общую надежность системы и увеличивает энергопотребление. Примером такой конструкции является антенна Kathrein для того же диапазона частот, что и рассмотренная выше:
Таким образом, диполи для нижнего диапазона частот находятся как бы внутри диполей верхнего диапазона.
Для реализации трех- (и более) диапазонного режимов работы наибольшей технологичностью обладают печатные многослойные антенны. В таких антеннах каждый новый слой работает в довольно узком диапазоне частот. Такая «многоэтажная» конструкция изготавливается из печатных антенн с индивидуальными излучателями, каждая антенна настраивается на отдельные частоты рабочего диапазона. Конструкция поясняется рисунком ниже:
Как и в любых других многоэлементных антеннах в такой конструкции происходит взаимодействие элементов, работающих в разных диапазонах частот. Само собой это взаимодействие оказывает влияние на направленность и согласование антенн, но данное взаимодействие может быть устранено методами, применяемыми в ФАР (фазированных антенных решетках). Например, одним из наиболее эффективных методов является изменение конструктивных параметров элементов путем смещения возбуждающего устройства, а также изменение размеров самого облучателя и толщины разделительного диэлектрического слоя.
Важным моментом является то, что все современные беспроводные технологии широкополосные, и ширина полосы рабочих частот составляет не менее 0,2 ГГц. Широкой рабочей полосой частот обладают антенны на основе взаимодополняющих структур, типичным примером которых являются антенны типа «bow-tie» (бабочка). Согласование такой антенны с линией передачи осуществляется подбором точки возбуждения и оптимизацией ее конфигурации. Чтобы расширить полосу рабочих частот по согласованию «бабочку» дополняют входным сопротивлением емкостного характера.
Моделирование и расчет подобных антенн производят в специализированных программных пакетах САПР. Современные программы позволяют моделировать антенну в полупрозрачном корпусе при наличии влияния различных конструктивных элементов антенной системы и позволяют тем самым произвести достаточно точный инженерный анализ.
Проектирование многодиапазонной антенны производят поэтапно. Сначала рассчитывают и проектируют микрополосковую печатную антенну с широкой полосой пропускания для каждого рабочего диапазона частот отдельно. Далее печатные антенны разных диапазонов совмещают (наложением друг на друга) и рассматривают их совместную работу, устраняя по возможности причины взаимного влияния.
Широкополосная антенна типа «бабочка» может быть удачно использована как основа для трехдиапазонной печатной антенны. На рисунке ниже изображены четыре различных варианта ее конфигурации.
Приведенные конструкции антенн отличаются формой реактивного элемента, который применяется для расширения рабочей полосы частот по согласованию. Каждый слой такой трехдиапазонной антенны представляет собой микрополосковый излучатель заданных геометрических размеров. Чем ниже частоты – тем больше относительный размер такого излучателя. Каждый слой печатной платы отделен от другого с помощью диэлектрика. Приведенная конструкция может работать в диапазоне GSM 1900 (1850-1990 МГц) – принимает нижний слой; WiMAX (2,5 – 2,69 ГГц) – принимает средний слой; WiMAX (3,3 – 3,5 ГГц) – принимает верхний слой. Подобная конструкция антенной системы позволит принимать и передавать радиосигнал без использования дополнительного активного оборудования, не увеличивая тем самым габаритных размеров блока антенны.
И в заключении немного о вреде БС
Порой, базовые станции операторов сотовой связи устанавливают прямо на крышах жилых домов, чем конкретно деморализуют некоторых их обитателей. У хозяев квартир перестают «рожать кошки», а на голове у бабушки начинают быстрее появляться седые волосы. А тем временем, от установленной базовой станции жители этого дома электромагнитного поля почти не получают, ибо «вниз» базовая станция не излучает. Да и, к слову сказать, нормы СаНПиНа для электромагнитного излучения в РФ на порядок ниже, чем в «развитых» странах запада, и поэтому в черте города базовые станции никогда на полную мощность не работают. Тем самым, вреда от БС нет, если только вы не устраиваетесь позагорать на крыше в паре метров от них. Зачастую, с десяток точек доступа, установленных в квартирах жителей, а также микроволновые печи и сотовые телефоны (прижатые к голове) оказывают на вас намного большее воздействие, нежели базовая станция, установленная в 100 метрах за пределами здания.
nag.ru
Карты базовых станций сотовых операторов для смартфона и планшета
как самому определить направление к базовой станции
Понять, где находится базовая станция сотового оператора — пожалуй главный вопрос любого, кто столкнулся с проблемой плохого сигнала мобильной связи и занялся ее исправлением, будь то профессиональный монтажник систем усиления сотовой связи или тот, кто решил устранить проблему самостоятельно. В данном разделе мы постараемя помочь Вам решить задачу определения местонахождения базовых станций с помощью специальных карт, компасов, программ и приложений. Надеемся этот материал поможет Вам достичь цели.
Куда должна смотреть внешняя антенна системы усиления сигнала сотовой связи?
При установке системы усиления сотовой связи наибольшую эффективность дает направленная внешняя антенна, и очень важно правильно выбрать ее направление. Она должна смотреть на ближайшую базовую станцию того сотового оператора, сигнал которого требуется усилить – МТС, Билайн, Мегафон или TELE2.
Но что делать, если нужно усилить сигнал не одного оператора? Конечно, сразу несколько операторов «сбоят» далеко не всегда, но все же такие ситуации случаются. Так что же делать в таком случае?
К счастью, очень часто с одной вышки ведут вещание сразу несколько мобильных операторов и тогда задача упрощается. Мы просто направляем антенну в сторону такой «мультиоператорской» базовой станции. А если такой вышки нет и нужные Вам операторы расположены на разных базовых станциях? – Тут вариантов несколько:
- Если разнос базовых станций нужных вам сотовых операторов не слишком велик, просто направляете антенну посередине между ними (учитывайте угол обзора антенны).
- Если нужные базовые станции находятся далеко друг от друга, на расстоянии большем угла обзора направленной антенны, здесь наиболее оптимальным вариантом будет использовать всенаправленную антенну с горизонтальным углом обзора 360 градусов.
- Альтернативой может быть использование двух усилителей сигнала сотовой связи и двух направленных антенн, чтобы каждый комплект смотрел в сторону нужных вышек сотовых операторов, но, на наш взгляд, это необоснованно удорожает систему и такой способ должен использоваться только в крайнем случае, если остальные варианты не дали положительного результата.
С тем, куда должна смотреть антенна, мы определились, и теперь подходим к следующему, и самому важному вопросу…
А как без специальных средств самостоятельно узнать расположение базовых станций сотовых операторов?
Если у Вас случайно не завалялся спектроанализатор, а скорее всего не завалялся, есть несколько способов определить местонахождение базовых станций сотовых операторов, сигнал которых Вы хотите усилить:
- Объехать местность на автомобиле или облететь на параплане, дроне или другом летательном аппарате. Достаточно увлекательный, но не самый эффективный способ. Хотя, в отсутствие других, имеет смысл использовать и его.
- Пригласить профессиональных установщиков систем усиления сигнала сотовой связи — на наш взгляд, это наиболее оптимальный способ со всех точек зрения.
- Самостоятельно определить местоположение базовых станций, воспользовавшись собранными здесь специальными Android и iOS приложениями, и картами базовых станций сотовых операторов.
КОМПАСЫ И КАРТЫ БАЗОВЫХ СТАНЦИЙ
ПОЛЕЗНЫЙ СОФТ
Ниже Вы найдете ссылки для скачивания приложений, карт и рекомендации по их использованию. Раздел постоянно пополняется и обновляется.
Приложение для Android
«Базовые станции (Москва и МО)»
от EngineeringForYou
Карта расположения базовых станций сотовых операторов.
Неоспоримое преимущество данного приложения — независимо от того, какая симкарта установлена в вашем смартфоне, оно в очень удобном формате показывает базовые станции ВСЕХ сотовых операторов в Москве и Московской области — МТС, Билайн, Мегафон, Tele2. Выдает номер, адрес и название оператора базовой станции, по которым в интернете легко можно найти подробную инофрмацию об интересующей вышке, включая ее частоты и стандарты. Дальше Московской области, по словам разработчика, он идти не планирует, а жаль. Очень классное приложение, имеет очень хорошие отзывы пользователей.
На наш взгляд — пока лучшее, наша оценка 5 баллов из 5ти!
Было бы 10 из 5ти, если бы при клике на конкретную вышку включался компас и указывал к ней направление.
Из описания разработчика:
«Поиск базовых станций операторов сотовой связи (МТС, МегаФон, ВымпелКом, Теле2) в Москве и Московской области. Искать можно по номеру БС, адресу, рядом с вами и просто на карте»
Скачать приложение «Базовые станции (Москва и МО)» от EngineeringForYou в GooglePlay
Приложение для Android и iOS
«Карты 3G 4G Wifi связи»
от OpenSignal.com
Компас расположения базовых станций сотовых операторов и точек wifi. Показывает базовые станции по всему миру. По отзывам периодически наблюдается ошибка направления компаса, но на карте показывает базовые станции правильно.
Некоторое неудобство заключается в том, что компас указывает только на ту соту, к которой в момент работы программы подключен Ваш телефон (текущую вышку связи). На карте программа также отражает базовые станции только Вашего оператора — через которого вы в данный момент пользуетесь мобильным интернетом (основная симкарта).
Приложение заявляет достаточно широкие возможности, в частности:
Компас базовых станций
Карта базовых станций и точек wifi
Тест скорости соединения и пинг
Лучшие и худшие места покрытия 2G, 3G и 4G
Сравнение скорости операторов
Имеет достаточно хороший рейтинг и отзывы пользователей.
Приложение для Android
«Сотовые Вышки, Локатор»
от Vitaly V
Карта базовых станций сотовых операторов. По отзывам пользователей программа хорошая, определяет местоположение сотовых вышек достаточно точно. Дополнительный весомый плюс — помимо прочего показывает характристики сигнала.
Недостатки как и у предыдущего приложения — показывает характеристики только текущего соединения. Хотя, приложение конечно отличное, а для более сложных манипуляций существуют спектроанализаторы и другая спецтехника.
Из описания разработчика:
«Дает приблизительную оценку расположения GSM/WCDMA/LTE сотовых вышек на карте.
Сохранение вышек в базе данных, идентификаторы сот, уровень сигнала и GPS местоположение»
Имеет хорошие отзывы пользователей.
Запрещается использовать авторский материал статьи без ссылки на сайт EVERSTREAM.RU
everstream.ru
принцип действия и влияние на здоровье человека
Анекдоты бытуют разные. Говорят, кошки перестают рожать, однако ученые испытывали влияние электромагнитных волн, последовательно отыскивая новые аспекты. Одна группа догадалась посадить таракана внутрь микроволновой печи… Насекомое сумело, отыскав укромный угол, выжить. Найдет ли человек безопасное место от антенны на жилом доме?
Технический прогресс мобильной связи
По всей планете строят вышки, оборудуя мачты, крыши домов, утробы зданий. Точное значение частот определено поколением сотовой связи (GPS, EDGE, UMTS, LTE, CDMA2000). Типовые мощности базовых станций разнятся. Вышки США высотой 15..50 метров, бытует установка на крыши жилых домов. Направление фронта практически параллельно поверхности почвы. Имеющая форму лопастей вентилятора диаграмма направленности обусловливает низкие значения сигнала непосредственно ниже области монтажа. Типовые значения плотности мощности в 100 раз ниже установленных комиссиями (например, ARPANSA), примеры:
- Kathrein 80010292 (GSM-900, 1800, UMTS-2100) – 1739 Вт, высота – 12,7 метра. Напряженность поля (50 метров до вышки) в направлении главного лепестка диаграммы направленности – 0,98 мкВт/кв. см (высота измерения 1,5 метра). Вдесятеро ниже российских норм.
- Kathrein 742241 (GSM-900, 1800, UMTS-2100) – 1428 Вт, высота – 20,5 метров.
- Kathrein 742241 (GSM-900, 1800, UMTS-2100) – 1329 Вт, высота – 33,3 метра.
Мобильная телефония обрела всемирное значение. Релейная радиосвязь фактически выступает основой технологии. Свыше 1,4 млн. вышек украсило планету. Третье поколение цифровой связи существенно увеличило число конструкций. Точки доступа украсили офисы, стены домов, квартиры. Однако эксперты указывают сравнительно малую опасность сегмента, беря за базу вещание (телевидение, радио). Сегодня медиков продолжают волновать долговременные эффекты, пропущенные торопливыми исследователями ранее. Уже доказано явление повышенной температуры тела жителей (+1 градус).
Тело поглощает впятеро больше энергии вещательных мощностей: 100 МГц – FM-радио; 300-400 МГц – телевидение. Высота человеческого роста делает людей прекрасными вертикальными приемными антеннами. Пятьдесят лет отработали телевизионщики, резкий рост смертности, заболеваемости отсутствует. Особенности модуляции псевдошумовыми сигналами сильно снижают мощность волн сотовой связи последних поколений.
Это интересно! Статистические данные развития рака населения близ базовых станций весьма неубедительны. Исследователи склонны считать факты причудой случая, простым совпадением.
Исследования проблемы дали право делать выводы: отсутствует изменение энцефалограммы, вероятность возникновения рака прежняя. Отдельные личности, обладающие гиперчувствительностью ощущают эффект самовнушения. Наконец, международными комиссиями выработаны меры (IEEE 2005, ICNIRP 1998), обеспечивающие защиту. Правительства государств обязаны локализовать действие документов, внедряя предписания экспертов. icnirp.org продает результаты исследований воздействия частот 100 кГц..300 ГГц (цена – 60 евро).
Общемировые требования
Типичный набор норм включает:
- Плотность энергии ниже установленной ARPANSA.
- Запрет возведения низких вышек. Высоту определяет законодательство государства.
- При необходимости возведения низких вышек объекты удовлетворяют приложению 3, Акта телекоммуникаций и Telecommunications Code of Practice 1997 (1997).
- Подробности установки уточняет местное законодательство.
Оборудование низких вышек немного отличается. Это сравнительно малые тарелки, антенны. Оборудование занимает высоты уже существующих конструкций.
Воздействие электромагнитных волн
Специфика действия электромагнитного излучения изучена плохо. Простой факт объясняется негуманностью исследований. Аналогично ученые мало знают о распаде крови под действием электрического тока, бьющего человека. Достоверных сведений мало, зато придуманы гипотезы. Согласно предположениям ученых, волна захватывает магнитный момент молекулы, начиная раскачивать. Поэтому жидкости ударно разогреваются силами трения. Твердые тела намного меньше склонны нагреваться. Каждый волен убедиться, положив внутрь микроволновой печки сахар.
Влияние волн определяется частотой. Воду лучше всего нагревает 2,4 ГГц. Имеются другие «удачные» комбинации, связью не используемые. Внимание, вопрос!
- Какова частота функционирования сотовых вышек?
Четвертое поколение находится как раз близ 2,5 ГГц. Птицы избегают вить гнезда близ станций кругового обзора. Отказывающиеся слушаться инстинктов погибают. Государство пытается ограничить мощность излучения вышек. СанПиН 2.1.8/2.2.4 устанавливает драконовские правила (кстати, вышла версия 2017 года):
- Плотность излучения передатчиков 900, 1800, 2100 МГц ниже 0,1 Вт/кв. м.
Зарубежные документы предоставляют больше свободы. Порог выше на порядок. Эксперты Великобритании рекомендуют людям младше 16 лет избегать телефонов. Доказаны (десятые годы XXI столетия) следующие эффекты воздействия излучения:
- Нарушения иммунной системы.
- Дисбаланс гормонов.
- Мозговые изменения млекопитающих.
- Ухудшение качества спермы.
- Неврологические синдромы.
Однако механизмы воздействия остаются неясными. Иранские исследователи (5 октября 2017) показали прямую взаимосвязь ухудшения самочувствия с близость вышек (пределы 300 метров), найдена корреляция проживания ближе 5300 метров. Симптомы:
- Головокружения.
- Тошнота.
- Раздражительность.
- Мигрени.
- Нервозность.
- Потеря памяти.
- Нарушения сна.
- Изменение либидо.
- Депрессия.
- Общий дискомфорт.
Эксперты рекомендуют удалять антенны на 300 метров. Однако упускается порядок используемой мощности. Выше упоминалось: западными странами применяются уровни в 100 раз ниже ограничений стандартов. Апрельские исследования (2017) пополнили список научно обоснованными сведениями об изменении состава крови, истощении уровня глутатиона, изменении уровня ферментов. Подозревают влияние базовых станций на ДНК (ncbi.nlm.nih.gov/pubmed/28777669). Существуют сообщения о разрыве молекулярных связей мобильными телефонами.
Это интересно! Исследованиями доказан вред, приносимый излучением, растительности. Кроны деревьев, подвергшихся многолетней экзекуции, сильно повреждены. Результат заметен невооруженным глазом. Ежегодно исследователи делали снимки деревьев.
Что делать
Желающим проверить законность действий провайдеров адвокаты дают совет посетить несколько организаций:
- Прокуратура.
- Суд.
- Роспотребнадзор.
Плотность мощности излучения устанавливает экспертиза. Видите возможность круговой поруки – тревожьте частного эксперта, обладающего нужным оборудованием (стоимость типичного измерителя напряженности поля измеряется тысячами долларов). Иногда чиновники предупреждают испытуемых. Оператор снизит временно мощность излучения. Самостоятельно проверить соответствие нормам пространства перед жилым зданием чрезвычайно сложно.
Имеется прецедент в Бресте: обитатели района Граевки оккупировали строительную площадку, собирали подписи против возведения на дворовой территории вышки сотовой связи. Мотивация проста: волны повредят здоровью детей, жизням жителей прилегающих домов. Действительный вред обсуждается, однако чаще стали умирать вполне известные люди. Причина – рак:
- Жанна Фриске.
- Михаил Задорнов.
- Певец Хворостовский.
Лишь малый перечень. Ранее отсутствовала столь обескураживающая смертность среди не старых людей. Всемирная организация здравоохранения заявила:
- Нет предпосылок видеть вред. Слабые радиосигналы неспособны оказать пагубное влияние.
Итоги
Написанное выше ясно свидетельствует: вред для здоровья вышки связи сильно недооценивали ученые эпохи предыдущих поколений пчелиных сот. Последние исследования ясно указывают пагубный радиус действия (пик – 80 метров), увеличение расстояния (свыше 300 метров) постепенно ослабляет эффект. Вначале европейские комиссии говорили: рядом с домом безопасно, поздние исследования начали опровергать устоявшееся мнение. Одновременно излучение от вышки в развитых странах много ниже предписываемого.
Первыми отсутствие влияния на человека стали оспаривать арабские, азиатские государства. Последовали повальные проверки наличия вреда от вышек. Радиация незаметна, редкий человек может описать, как выглядит фотон микроволн.
Фотон микроволн
Доклады исследователей
- Камилла Риз, МВА, Нью-Йорк (2016), исследования заказаны клиентом, почувствовавшим недомогание: «Первым делом провела измерения на первом этаже, в помещении, где человек получил рак горла. Затем обследовала спальню, уровень излучения непрерывно повышался. Эмпирическим путем установлен наружный источник. След вел вдоль улицы к группе зданий, разместивших антенну. Местные сказали: из жителей девяти квартир восемь нажили рак, в оставшейся случилось 3 выкидыша».
- Доклад инициативной группы Bio-initiative 2012 (2014): «Биоэффект провоцируют сравнительно малые дозы излучения. Достаточно нескольких минут облучения типовыми уровнями сотовых операторов, радиотелефонов. Хронический эффект провоцирует болезнь.»
- Руководство EUROPEAEM 2105 для предотвращения поражения радиоволнами: «Люди, живущие близ базовых станций демонстрируют явную корреляцию с усталостью, депрессией, мигренями, нарушением концентрации внимания.»
Шведские исследователи заявили: проведено множество исследований действия единственной частоты, однако человека окружает уйма станций. Необходимо оценить воздействие результирующего поля спектра электромагнитных колебаний. Ученые исследовали опасность стокгольмского метро (stopsmartmetersbc.com/wp-content/uploads/2016/08/Hardell-RFR-Stockholm-Central-Railway-Station-some-medical-aspects-on-public-exposure-July2716.pdf), сделав определенные выводы: излучение несет опасность. Уровень канцерогенности, согласно выводам, соперничает с радиацией, асбестом.
Доктор философии Роберт Кейн, изрядно поработавший на Моторолу, заявил:
- Вера в безвредность микроволн касательно разрушения ДНК, прочих проблем, скорее рождена недостаточным понимаем вопроса. Механизм поглощения излучения загадочен, процесс разрушения молекул явно не описывается простой картиной ионизации молекул воздуха. Очевиден урон хромосомам. Обнаружение урона сопутствует всем используемым человечествам частотам: радио, телевидение, беспроводная связь, вплоть до 9 ГГц.
setinoid.ru
вред для здоровья, безопасное по нормам СанПиН и минимальное по закону 2019
Постоянно появляются новые операторы теле- и радиовещания, мобильной связи. В борьбе за удобные места зачастую антенна сотовой связи неожиданно возникает рядом с домом. В нормативных документах расстояние от вышки сотовой связи до жилых домов не указано в точных цифрах. Оно определяется величиной общего фона, вредного для человека.
Сотовая вышка связи за жилым домом
Роспотребнадзор разрабатывает нормативы излучения и сам их контролирует. Необходимо замерять уровень излучения уже после запуска оборудования, когда все построено. Каждый человек должен знать степень опасности излучений для здоровья и как им противостоять.
Определение безопасного расстояния от вышки сотовой связи
Специалисты утверждают, что находиться непосредственно под базовой станцией сотовой связи безопасно. Излучение от вышки сотовой связи приходит и уходит горизонтально и ловит сигнал на расстоянии до 35 км. Это означает, что вертикально, возле столба с оборудованием, не действует излучение мобильной связи. Но при этом телефон работает отлично.
Большая антенна
Об опасности, которую представляет вышка мобильной связи, следует знать:
- Основное излучение направлено практически параллельно земле, под углом 3°.
- Оборудование должно размещаться на столбах и мачтах.
- Устанавливать антенны на крыше домов можно в порядке исключения в городских многоэтажных районах.
- Стекло уменьшает силу излучения в 2,5 раза, бетонная стена – в 30 раз.
- При влажной уборке удаляется не только пыль, но и статические заряды с поверхности мебели.
- Дальность приема составляет 35 км.
- Кроме излучения, вышка сотовой связи грозит жизни и здоровью людей обрушением.
Около общественного здания
СанПиН учитывает и измеряет только излучение антенны сотовой связи и считает безопасным место под излучающим оборудованием.
Стоять рядом со столбом, на котором смонтированы ретранслятор и антенна, – значит находиться в магнитном и индукционном поле, излучаемом целым пучком кабелей, идущих из-под земли по столбу верх.
Ведь любой провод, пропускающий ток, создает вокруг себя поле. Его излучение достигает допустимого безопасного значения на дистанции от 5 м.
Измеряя расстояние от жилого дома до вышки сотовой связи, следует помнить и о кабелях, которые часто прокладывают прямо по стенам или шахтам лифта, выводя оборудование на крышу. Излучаемые ими магнитные поля по своему воздействию почти не отличаются от радиации. Они слабее, но постоянно находятся рядом.
Нормы расположения вышки сотовой связи
Затухание излучения происходит пропорционально квадрату расстояния до антенны. Если изобразить графически параболу излучения и наложить на нее допустимое значение, то можно определить безопасное расстояние от вышки сотовой связи до дома. Линии пересекутся напротив значения примерно в 45 м.
Учитывая, что одновременно работают другие источники излучения (например, теле-, видеокоммуникации, интернет), безопасное расстояние для здоровья составляет минимум 75 м в приоритетном направлении связи.
Благоприятная среда, чистая от вредных излучений, гарантированно начинается там, где телефонная вышка удалена на 100 м и рядом нет другого мощного электрического оборудования. Многоэтажный жилой дом строится на удалении от других построек в 25–60 м.
Рядом с городом
Вышка сотовой связи рядом с домом: допустимая норма
Роспотребнадзор обязывает сделать замеры электромагнитных излучений по нормам СанПиН и ГОСТа еще до установки оборудования. Суммарно ЭМИ не должны превышать 10 мВТ/см2. Как при этом учесть излучение от строящейся вышки, не указано. Точный результат будет получен только при текущих замерах. Они должны проводиться раз в 3 года.
Монтаж
СанПиН 2.1.8/2.2.4.1383-03 определяет минимальное расстояние от дома до сотовой вышки в 7 м и выдвигает ряд требований для мобильных ретрансляторов, расположенных на здании:
- антенна располагается на высоте 1,5–5 м от поверхности крыши;
- все подходы должны быть недоступны для посторонних;
- санитарная зона на крыше и чердаке составляет от 10 м;
- для установки оборудования над жилым домом необходимо письменное согласие жильцов, не менее 66 %.
Опора с антеннами
Нормы и правила установки вышки сотовой связи от жилых домов должны соблюдаться неукоснительно. Высота стандартной вышки составляет 29 м, при этом антенны расположены в верхней части. Границы санитарной зоны определяются замерами суммарных излучений на высоте два метра от земли. Внешняя граница рассчитывается с учетом высотности жилых и промышленных зданий перспективной застройки.
Расстояние внутри санитарных зон вышек мобильной связи нормируется Роспотребнадзором. Разрешение на установку оборудования выдается с учетом всех операторов мобильной связи, радиооператоров и других устройств, излучающих магнитные волны.
Недалеко от деревни
В определенных надзорными органами санитарных зонах запрещено строительство жилых домов. На их территории рекомендуют в черте города устраивать автомобильные стоянки, склады и другие объекты без постоянного присутствия людей. На строениях, попадающих в ЗОЗ – зона ограниченной застройки, можно провести защитные мероприятия. Например, покрыть крышу металлическим листом и профнастилом. Материал хорошо гасит и отражает лучи.
Нюансы
В частном секторе и на территории дачных кооперативов СНиП определяет, какое расстояние будет безопасным от сотовой вышки. Статьи нормативного документа запрещают установку вышки на территории дачного кооператива.
Минимальное расстояние от границы земель общества берется из расчета 1,5 высоты мачты. Кроме излучения, СНиП учитывает возможность обрушения объекта и опасность от его падения. Он может разрушить строения и травмировать находящихся на его территории людей.
Схема расположения элементов мачты
На участках ИЖС санитарными нормами запрещено размещение вышек сотовой связи без заключения договора с хозяином. От забора минимальный отступ делается не меньше 7 м.
Вред для здоровья от сотовой вышки связи учитывается при оформлении разрешительных документов. Они не выдаются для установки оборудования мобильной связи в ПГТ и частном секторе. Нельзя ставить антенны на дома в 2 этажа и ниже.
Согласно нормативным документам разрешение на строительство мачт с оборудованием для работы мобильной связи, их реконструкцию и ремонт можно получить только по результатам санитарно-эпидемиологического исследования. Суммарные показатели не должны превышать установленных норм излучения. Конструкция для антенн строится в строгом соответствии с ГОСТом и статьей Федерального закона.
Рекомендации
Замеры производятся в жилых и офисных зданиях, если они попадают в зону распространения основного излучения. Его можно определять углом в 3–8° от горизонтальной плоскости, проведенной через антенну. Именно в этом секторе происходит прием и отправление сигналов, которые посылает телефон.
Зона наибольшей опасности от излучений
Определить безопасное расстояние от вышки до жилых домов можно, измерив фактическую величину излучения. Этим занимаются сотрудники Роспотребнадзора и Роскомнадзора. Узнавать нормативы также можно и у них, т. к. они же и будут разрешать эксплуатацию вышки. Сотрудники данных организаций имеют соответствующую аппаратуру, таблицу расчетов и значения допустимых норм.
Влияние мобильной связи на здоровье человека
Простой житель многоэтажки, расположенной рядом с вышкой, должен знать, что наибольшему облучению он подвергается, выходя на балкон, расположенный на уровне секторной и радиорелейной антенны. Такое положение возникает при установке на соседней крыше, если соседний дом значительно ниже или вышка стоит между строениями.
Антенны, их лепестки, настраиваются горизонтально. Наибольшая опасность, если установленная на вышке или малоэтажном здании антенна смотрит прямо на многоквартирный дом.
В этом случае минимальное безопасное расстояние от дома до сотовой вышки должно быть 28 метров. Такой результат получен в результате расчетов и замеров. Находиться на уровне лепестка и в зоне активного излучения опаснее, чем в других местах относительно антенны.
Схема возможного вреда для мозга и здоровья человека
Одна вышка сотовой связи полностью покрывает маленький городок и полосу земель вокруг него. По факту, чтобы перестраховаться, каждый телефонный оператор устанавливает несколько вышек.
В большинстве регионов параллельно работают компании МТС, Мегафон и другие. СанПиН нормирует расстояние внутри санитарных зон опор сотовой связи 75–110 м друг от друга. Это касается мобильного телевидения и всех других операторов.
Антенны на крыше жилого дома
Наибольший вред для здоровья от сотовой связи получают жители, чей многоквартирный дом стоит в окружении вышек и оборудования на крышах.
Излучение от всех источников складывается, и в результате получается величина излучения в несколько раз выше нормы.
Смотрите видео ниже на эту тему.
Угроза излучения для человека
Цифры на приборе не смогут наглядно продемонстрировать вред для здоровья человека от сотовой связи. Лучи невидимые, и понять их вред сложно.
Излучение телефона и возможный вред здоровью
Для определения силы луча можно провести эксперимент:
- Спуститься в цокольное помещение и проверить наличие связи.
- Провести мысленно линию на улицу.
- Посчитать, сколько бетонных перекрытий и стен пронизывает луч от телефона.
По расчетам специалистов, каждый слой бетона уменьшает излучение в 30–32 раза. Остается умножить это число на количество преград и получить условное значение силы луча и представить, как они вас пронизывают на открытом месте.
На даче
Сторонники теории, что безопасно пользоваться мобильной связью и жить среди вышек, любят рассказывать, что бытовые приборы излучают значительно больше. Люди в своей квартире окружены проводами.
При включении обычной лампочки возникает магнитное поле. Многие замечали, что после длительного просмотра телевизора даже в удобной позе человек чувствует себя слабым и уставшим. Причина в излучении прибора.
В таблице для сравнения приведены показатели излучения бытового оборудования. По СНиП норма определяется в 0,2 мкТл.
Оборудование и приборы | Показатели величины магнитного поля, мкТл |
Провод освещения | 0,7 |
Холодильник, стоя рядом | 1 |
Микроволновка | 8–100 |
Электробритва | 17 |
Фен | 15 |
Кофеварка | 10 |
Компьютер | 1–50 |
Троллейбус, в салоне | 150 |
Наибольшее излучение действует на человека, когда он находится в метро. Кроме прямых лучей от работы электродвигателя, освещения и других источников, он получает отраженные волны. Вред для здоровья от компьютера и микроволновки определяются степенью их защиты.
В результате даже провод создает магнитное поле, превышающее норму в 3,5 раза. Но он находится на расстоянии более 1 м, значит, его фактическое воздействие в разы меньше.
Возле большинства опасного оборудования человек находится ограниченное время. Вышки сотовой связи работают круглосуточно. Безопасность пользования телефоном можно увеличить следующим образом:
- меньше разговаривать по телефону;
- использовать громкую связь, чтобы удалить аппарат от головы;
- размещать мобильный телефон подальше от себя.
Влияние излучения от сотового телефона на мозг человека
В зависимости от модели, неактивный, неподвижно лежащий телефон каждые 5–8 секунд посылает сигнал для связи с вышкой. Если его двигать, то лучи распространяются постоянно во все стороны. Минимальная норма излучения для человека превышается сотовым телефоном в 200 раз.
Влияние на здоровье
Всесторонние исследования по влиянию излучения мобильной связи и вышек с антеннами еще не провели. Результаты, которые уже получили, свидетельствуют, что волны, исходящие из антенн сотовой связи, отрицательно влияют на здоровье, особенно на следующие системы:
- нервную;
- сердечно-сосудистую;
- эндокринную;
- репродуктивную;
- иммунную.
Вред для нервной системы человека
Первые признаки такого воздействия: головные боли, слабость, усталость. Операторы мобильной связи утверждают, что программа рассчитана таким образом, что излучение не влияет на здоровье. Длина вышки и ее удаление обеспечивают уменьшение мощности магнитного поля.
Как защититься от вышек мобильной связи
Не стоит разрушать частный дом, если рядом поставили вышку сотовой связи. Можно принять ряд мер по уменьшению излучения внутри него:
- покрыть крышу сверху металлочерепицей или профилем;
- установить на окна двойные стеклопакеты;
- оштукатурить стены толстым слоем цементного раствора.
Принцип работы
Металл отражает лучи, и попадать внутрь они почти не будут. Каждое стекло в 2,5 раза уменьшает силу излучения.
Обычная бетонная стена гасит магнитное поле, делая его слабее в 30 раз. Оштукатуривая фасад, можно добиться еще большего уменьшения силы излучения и одновременно утеплить строение.
Большое значение для защиты от магнитных и индукционных излучений имеет влажная уборка. Проводя по поверхности мебели, стен, подоконников смоченной в воде салфеткой, человек стирает одновременно пыль и статическое напряжение.
Оно скапливается на всех предметах в разных количествах в зависимости от материала.
При этом нужно учитывать, что пылесос убирает только пыль и малую долю напряжений.
В крупных городах нужно требовать от управляющей организации ремонта крыши, замены окон. При подозрении, что фон значительно выше, следует обращаться в Роскомнадзор. Они проведут замеры и в случае нарушений заставят демонтировать оборудование. Заявление можно оставить прямо на сайте организации.
На крыше жилого дома
Вред от сотовой вышки очевиден. Даже в Москве, где особенно актуальна проблема жилья, квартира в доме, на крыше которого стоит антенна, на 10–15 % стоит дешевле.
pronormy.ru
Основа сотовой сети — как строят базовые станции / Сети и коммуникации
Мобильная связь третьего поколения распространяется в российских регионах практически со скоростью звука — все федеральные операторы ведут активное строительство по всей лицензионной территории. Конечно, особое внимание уделяется крупным городам-миллионникам и областям вокруг них — тем местам, где самое большое количество абонентов. Потребители здесь требовательные, и качество связи должно быть на высоте. Итак, давайте посмотрим, как строят, монтируют и обслуживают базовые станции (БС) сотовой связи на земле, в метро и в мобильном режиме.Краткая типология БС
Основной элемент сотовой сети любого стандарта — это базовая станция (BSS, Base Station System), которая занимается приемом звонков абонентов и передачей данных по радиоканалу. В зависимости от стандарта связи, базовые станции (БС) работают в диапазоне частот от 450 до 2100 МГц. БС составляют основу макроячеек, так называемых сот. Поскольку радиус работы таких станций составляет порядка 10-12 км за городом и около 3-5 км в городе, их строят много и располагают относительно недалеко друг от друга. Полностью автономные и автоматизированные базовые станции представляют собой небольшие контейнеры, которые устанавливаются, как правило, на крыше зданий. В обязательном порядке имеется беспроводной или кабельный канал связи с центром управления сетью, куда передается огромный поток данных — входящие и исходящие вызовы от абонентов. Кстати, мощность излучения базовых станций в течение суток не является постоянной. Загрузка определяется количеством сотовых телефонов в зоне обслуживания конкретной базовой станции и интенсивностью разговоров. А это, в свою очередь, зависит от времени суток, дня недели и др. В ночные часы загрузка базовых станций практически равна нулю, поэтому станции «молчат». Теоретически, стандартная 3-секторная двухдиапазонная БС может обслужить около 150 абонентов одновременно. Существует мнение, что базовые станции очень вредны для здоровья. Исследования электромагнитной обстановки на территории, прилегающей к БС, неоднократно проводились специалистами стран ЕС, США и России. Если изучить результаты этих измерений, то становится видно, что в 100% уровень электромагнитного поля в здании, на котором установлена БС, не отличается от фонового. А на прилегающей к станции территории в 91% случаев зафиксированный уровень электромагнитного поля был в 10 раз меньше ПДУ (предельно допустимого уровня), установленного для радиотехнических объектов в Москве.Практика строительства
В городе БС предпочитают устанавливать на уже существующих конструкциях — в основном, на высотных зданиях деловых центров или государственных органов власти: здесь и охрана помещения, и доминирующее положение по высоте присутствует. Антенны монтируют на кромке крыши или внешнем подвесе, чтобы не портить внешний вид таких зданий.Антенна базовой станции — часто только такой элемент указывает на то, что на здании располагается базовая станция сотовой связи
А на открытом пространстве все более наглядно — красно-белые вышки здесь уже давно часть сельского пейзажа. Если прокатиться по любой автомагистрали, то можно отметить, что форма этих башен различна: у одних три опоры, у других — четыре. Есть разница и в силуэте — большинству пользователей это не заметно, но тренированный взгляд все видит сразу. Станции для GSM-сетей обычно ставят на расстоянии 10-15 км друг от друга, а для UMTS — в два раза чаще, особенно в городе, где их эффективная дальность снижается из-за множества железобетонных зданий. Еще одна интересная особенность — базовые станции можно размещать не только на башнях, но и на существующих высотных сооружениях (трубы, элеваторы и т. д.). Зачастую это позволяет прилично сэкономить на стоимости мачты, высота которой составляет 72-100 м. Кстати, требования к расположению башни обычно очень строгие — желательно самое высокое место в округе, доступ к электричеству (если необходимо — устанавливают собственный трансформатор), вблизи населенных пунктов. Таких башен только в Московской области в летний период (наиболее пригодный для активного строительства) ставится по 30-40 штук в месяц.Вышки мобильной связи — уже давно привычная деталь российского пейзажа
Типовой монтаж
Смотреть на то, как монтируется оборудование на зданиях в городе, скучно — кран, рабочие и большая часть операций скрыта от глаз самых обычных пользователей. А вот вертолетный монтаж — это гораздо более зрелищно. Причем, технология за последние годы нисколько не изменилась. Базовая станция вступает в строй обычно в течение двух недель с момента монтажа металлоконструкции. Установка базовой станции проходит в несколько этапов.- 1. укрупнительная сборка (четыре секции под вертолет и одна под кран) организуется силами 6-8 человек и одним автокраном в течение 4-5 дней. В это же время тяжелым краном устанавливается первая секция сооружения, чтобы не тратить на нее время вертолетного монтажа.
- 2. монтаж вертолетом в один день.
- 3. измерения пространственного положения ствола опоры и ее «протяжка» (2-3 дня). Допуск очень жесткий — башня не должна отклоняться от вертикального положения более чем на 6-7 см.
- 4. благоустройство участка вокруг башни (водоотводные лотки, установка ограждения).
- 5. монтаж базовой станции, секторных (связь с терминалами пользователей) и радиорелейных (связь с другими башнями) антенн, а также оборудования внутри контейнера, подводится электричество, монтируется система светоограждения, молниезащиты, заземления.
- 6. включение базовой станции и настройка пролетов (точная настройка азимутов и сигналов антенн).
- 7. подключение базовой станции в сеть (иначе — интеграция) и затем — сдача оператору сотовой связи всего объекта связи в комплексе.
Стройплощадка — вагончик для оборудования и первая секция высотой в 20 метров, установленная краном
Обычно сборка происходит крайне оперативно. Все металлоконструкции привозят на длинномерных тягачах и после этого собирают в четыре крупные секции, которые вертолету предстоит водрузить одну на другую.Самая верхняя часть мачты, здесь будут установлены антенны
Перед началом монтажа конструкции разложены в строгом соответствии с порядком сборки, для того, чтобы вертолет не совершал лишних движений в воздухе. Остается только поднять секции башни в воздух и по прямой донести до места сборки. Значительную часть авиационного обслуживания монтажных работ осуществляет НПО «Взлет» (г. Москва). На их машинах специально для монтажа сложных конструкций предусмотрено несколько технических новшеств. Одно из них — специальная внешняя подвеска, на которую крепят трос с блоками башни. Она управляется компьютером, который учитывает все порывы ветра и удерживает несколько тонн металла в точно вертикальном направлении. На некоторых «бортах» есть и специальная прозрачная задняя кабина, из которой летчик осуществляет монтаж секций. Оттуда открывается вид на конструкцию, которую необходимо установить. После взлета пилот, находящийся в основной кабине, передает управление в дополнительную кабину, и уже оттуда идет управление вертолетом для установки конструкции на нужное место. Как только она закреплена, так называемый флажковой монтажник дает условный сигнал пилоту, тот сбрасывает трос и немедленно отлетает от башни, чтобы не зацепить ее при порыве ветра.Перед монтажом идет облегчение взлетного веса вертолета
Вертолет к монтажу готовят несколько техников — идет слив топлива во внешнюю цистерну, чтобы уравновесить машину и облегчить взлетный вес. Обычно конструкции башни весят по 2-3 тонны, при грузоподъемности машины до 5 тонн. Перед монтажом обычно запрашивается прогноз погоды по конкретному региону — должна быть хорошая видимость и небольшой ветер. При этом сам процесс сборки очень быстрый — можно уложиться минут в 40, ведь чтобы поставить одну секцию надо всего 6 минут. Технология вертолетного монтажа позволяет монтировать 3-4 конструкции в день, если они, конечно, близко расположены друг к другу.Обычно к монтажу привлекаются вертолеты типа Ми8 МТВ1, хотя для более тяжелых конструкций есть машины Ми10К, КА32 и даже самый большой вертолет Ми26.
Первый взлет — бело-синий вертолет Ми8 МТВ1 оживает, надрывно кашляет, вдыхая жизнь в свои двигатели, и приведенные в движение лопасти поднимают его над землей. Здесь можно оценить мастерство летчиков — громадная машина разворачивается буквально на пятачке и грациозно подплывает к первой конструкции, которую надо водрузить на уже собранные секции.Персонал занял места «по боевому расписанию» — люди поднимаются к стыковочным узлам башни.
Вертолет готов к подъему первой секции — все разложено в своей очередности.
Если стоять в 30-40 метрах от машины, то на деревьях бешено дергаются листья, вокруг свистит воздух, летят в разные стороны небольшие ветки и трава — все живое прижимается к земле под сильным воздушным напором от лопастей вертолета. Работа по вертолетному монтажу ювелирная и требует большой выдержки и точности, как от летчиков, так и от монтажников, которые все это время работают на башне.Плавное снижение с выпуском тросов, стыковка с конструкцией, медленный взлет в направлении башни.
К каждой многотонной секции, из которых собирают башню, привязаны направляющие тросы-ловители, с их помощью монтажники направляют конструкцию. Так вот сразу брать в руки тросы-ловители — нельзя! Надо, чтобы они сначала коснулись металлического остова башни, и заряд статического электричества ушел в землю. Или другая ситуация — весь процесс монтажа производится в режиме радиомолчания — управление только по визуальным командам «флажкового» с земли. Именно этот человек должен сам убедиться в том, что фланцы блоков соприкоснулись, и только после крепления секции дать команду пилоту вертолета отцепить трос с внешней подвески.Борясь с ветром, вертолет осторожно подходит к башне, касается тросами-ловителями металлических опор, после чего монтажники подтягивают конструкцию к основанию и закрепляют специальными болтами.
Все то же самое происходит с третьей и последующими секциями — только гораздо выше.
Захват последней секции и установка ее наверху. Самая сложная операция — ветер на высоте уже сильный, да и вертолету приходится каждый раз забираться все выше и выше, чтобы доставить секцию к башне.
Подтянуты уже все тросы, вставлены все оправки, закреплены болты, и вертолет, повинуясь взмаху флажка, отстегивает металлический трос и отходит в сторону от башни.
Антенно-фидерные трассы.
Все — монтаж башни закончен. Осталось протянуть антенно-фидерные трассы и установить оборудование в контейнер. Скоро и здесь будет устойчивая связь. Но для этого сотрудникам оператора связи еще предстоит поработать — установленное оборудование необходимо настроить.3dnews.ru
Как работает сотовая связь | Как это сделано
Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь…
Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.
После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:
2.
Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:
3.
Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи. Базовая Станция может работать в трех диапазонах: 900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий 1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе 2100 МГц — Сеть 3G Вот так выглядит шкаф с 3G оборудованием:
4.
На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.
5.
6.
Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров… Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах. Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется. Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:
Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем. Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга. SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала. Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками. Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле. С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов:
7.
В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор:
8.
9.
Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:
10.
11.
12.
Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:
13.
Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»:
14.
Вся крыша такого автомобиля утыкана антеннами:
15.
Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:
16.
Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):
17.
Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов. Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка». ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка». Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования. За коммутаторами круглосуточно следят по 2 инженера:
18.
На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:
19.
Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:
22.
21.
Источник
kak-eto-sdelano.ru
Добавить комментарий